Rheological and Thermal Properties of Icy Materials
نویسندگان
چکیده
Laboratory measurements of physical properties of planetary ices generate information for dynamical models of tectonically active icy bodies in the outer solar system. We review the methods for measuring both flow properties and thermal properties of icy planetary materials in the laboratory, and describe physical theories that are essential for intelligent extrapolation of data from laboratory to planetary conditions. This review is structured with a separate and independent section for each of the two sets of physical properties, rheological and thermal. The rheological behaviors of planetary ices are as diverse as the icy moons themselves. High-pressure water ice phases show respective viscosities that vary over four orders of magnitude. Ices of CO2, NH3, as well as clathrate hydrates of CH4 and other gases vary in viscosity by nearly ten orders of magnitude. Heat capacity and thermal conductivity of detected/inferred compositions in outer solar system bodies have been revised. Some low temperature phases of minerals and condensates have a deviant thermal behaviour related to paramount water ice. Hydrated salts have low values of thermal conductivity and an inverse dependence of conductivity on temperature, similar to clathrate hydrates or glassy solids. This striking behavior may suit the dynamics of icy satellites.
منابع مشابه
An Improvement in Thermal and Rheological Properties of Water-based Drilling Fluids Using Multiwall Carbon Nanotube (MWCNT)
Designing drilling fluids for drilling in deep gas reservoirs and geothermal wells is a major challenge. Cooling drilling fluids and preparing stable mud with high thermal conductivity are of great concern. Drilling nanofluids, i.e. a low fraction of carbon nanotube (CNT) well dispersed in mud, may enhance the mixture thermal conductivity compared to the base fluids. Thus, they are potentially ...
متن کاملThermal and Rheological Properties Improvement of Oil-based Drilling Fluids Using Multi-walled Carbon Nanotubes (MWCNT)
In this paper, we detail our results for the impact of MWCNT on the thermal and rheological properties of oil-based drilling muds. Our analysis considers the effects of time, temperature, and MWCNT volume fraction. The scanning electron microscopy imaging technique was used to monitor the MWCNTsdispersion quality. The experimental results unveil a considerable enhancement in the thermal conduct...
متن کاملRheological, thermal and tensile properties of PE/nanoclay nanocomposites and PE/nanoclay nanocomposite cast films
The effects of three different mixers, two different feeding orders and nanoclay content on the structure development and rheological properties of PE/nanoclay nanocomposite samples were investigated. Fractional Zener and Carreau–Yasuda models were applied to discuss the melt linear viscoelastic properties of the samples. Moreover, scaling law for fractal networks was used to quantify clay disp...
متن کاملEvaluation of Heterogeneous Densification, Anisotropic Shrinkage and Rheological Behavior of Ceramic Materials during Liquid Phase Sintering by Numerical-Experimental Procedure
The effective shear and bulk viscosity, as well as dynamic viscosity, describe the rheological properties of the ceramic body during the liquid phase sintering process. The rheological parameters depend on the physical and thermo-mechanical characteristics of the material such as relative density, temperature, grain size, diffusion coefficient, and activation energy. Thermal behavior of the cer...
متن کاملPhysical and Rheological Properties of Oil in Water Heat Stable Emulsions Made from Different Stabilizers
Oil in water emulsions have attracted considerable attention in food industry due to their large applications. In this study, the effect of thermal treatment on oil in water emulsions (o/w) containing 40% oil was studied. The emulsions were prepared using xanthan gum, guar gum and carboxymethyl cellulose as stabilizer and polyoxyethylen sorbitan monooleat as emulsifier. A mixture design was use...
متن کامل